The Impact of Human-Caused Ocean Noise Pollution on Marine Animals and Ecosystems

Lindy Weilgart, Ph.D.
OceanCare, Switzerland
&
Department of Biology
Dalhousie University
Halifax, Nova Scotia CANADA
Impacts of Noise on Marine Animals

• Most marine animals use sound for vital functions
• So far, around 130 marine species shown to be impacted by underwater noise (practically all that have been examined)
 • 30 species of marine mammals
 • 66 species of fish
 • 36 species of invertebrates
Impacts of Noise on Marine Animals

• Development
 • Body malformations
 • Higher egg or immature mortality
 • Developmental delays
 • Delays in metamorphosing and settling
 • Slower growth rates

• Anatomy
 • Hearing loss (up to months or permanent)
 • Cellular damage to statocysts/neurons
 • Massive internal injuries
 • Disorientation and death
Impacts of Noise on Marine Animals

- **Physiology (stress)**
 - Increases in:
 - Stress hormones
 - Metabolic rate
 - Oxygen uptake
 - Cardiac output
 - Parasites
 - Irritation
 - Distress
 - Mortality rate (disease and cannibalism)

- **Worse/lower:**
 - Body condition
 - Growth
 - Weight
 - Food consumption
 - Immune response
 - Reproductive rates
 - DNA integrity
 - Overall physiology
Impacts of Noise on Marine Animals

• Behavior
 • Avoidance of important habitat, days to years
 • Alarm responses, hiding, flight
 • Increased aggression
 • Decreased anti-predator defense
 • Decreased nest-digging and care
 • Decreased courtship calls, spawning, egg clutches
 • Decreased feeding
 • Distraction (food-handling errors, inefficiency)
 • Uncoordinated schooling
Impacts of Noise on Marine Animals

- Masking (obsuring, obliterating of sounds of interest)
- Commercial catch rates
 - Decreased landings (up to 80% drop)
 - Large fish leave area
 - Increased bycatch
 - Decreased abundance
- Ecological Services
 - Less water filtration
 - Less sediment layer mixing
 - Less bio-irrigation (key to nutrient cycling)
Noise Impacts on Ecosystem and Ecological Services

• Boat noise increased larval mortality and developmental failure in sea hare embryos *(Nedelec et al. 2014)*
 • Keep corals and algae in balance, graze on toxic bacteria

• Ship generator noise increases mussel biofouling but decreases size with “potential cascading ecological impacts” *(Jolivet et al. 2016)*
 • Vessel hull fouling responsible for 75% of invasive species brought in by ships *(McDonald et al. 2014)*
 • Costs U.S. Navy US$1 billion every year

• Noise causes confusion and disrupts orientation behavior at a critical (larval) stage in reef fish *(Simpson et al. 2010)*
 • Could affect population welfare, weaken connectivity between populations, reducing replenishment of fished species
Seismic Airgun Noise Kills Zooplankton

- Single airgun causes “hole” in zooplankton out to 1.2 km (max range examined) *(McCauley et al. 2017)*
 - Most seismic surveys consist of 18-48 airguns
- Numbers halved in most plankton species
- 1/3 of species almost entirely killed
- All krill larvae killed
- 2-3x more dead zooplankton

Healthy populations of fish and marine mammals are not possible without viable planktonic productivity
Seismic Airgun Noise Damages Sensory Organs and Reflexes in Lobster

- Extensively damaged hair cells in statocysts (for body positioning, gravity-sensing)
- Up to 157% longer righting time, even one year post-noise exposure and after moulting
- Critical reflex for predator avoidance \((Day\ et\ al.\ 2019)\)
Noise Impacts on Ecosystem and Ecological Services

- 6 hrs of ship noise caused breaks in DNA of blue mussel, lower filtration (algal clearance), oxidative stress (Wale et al. 2016)
 - Mussels could not perform important ecological service of water filtration
- Scallop mortality increased with seismic survey, reflexes disrupted, immunocompromised, imbalanced electrolytes (Day et al. 2017)
 - Scallops improve water quality through bio-filtration, increase light for underwater plants, decrease eutrophication, feed bottom-dwelling organisms by depositing organic matter from water column
- Predator-prey interactions in fish changed with boat noise (Sabet et al. 2015; Simpson et al. 2016)
 - Food web dynamics, community structure and stability compromised
Noise Impacts on Ecosystem and Ecological Services

• Noise repressed burying and bio-irrigation behavior (or water circulation within lobster burrows) in Norway lobsters (Solan et al. 2016)

• Manila clams showed a stress response to noise, individuals relocated less, stayed on top of the seabed, and closed their valves, increasing lactate dangerously
 • Clams could not mix upper layers of sediment and could not feed
 • Noise changed the fluid and particle transport that invertebrates provide, key to nutrient cycling on the seabed
Impacts of Noise on Cetaceans

- Avoidance of important habitat, sometimes days to years
- Reduced feeding and feeding success
- Decreased reproduction
- Masking
- Change in calling rate, potentially affecting mating
- Disruption in migration
- Strong escape responses
- Hearing damage
- Stress (damage to immune and reproductive function)
- Death
Human-Caused Ocean Noise

Can prevent whales from:

- hearing prey or predators
- orienting, sensing the environment
- communicating with mates, group members, or young

Masking

Before Noise

After Noise

Loss in whale communication range

From C.W. Clark
Clark & Gagnon 2006

Raises background 10-30 dB (ten-fold or thousand-fold) over 35,000-70,000 sq km (area of Switzerland-Ireland) for months; finbacks stop singing, most likely population impact
• Military sonars (and some seismic surveys) can cause fatal mass strandings, esp. in beaked whales

• Hemorrhages around vital organs like brain, heart

• Death within 4-24 hrs.

(Fernández et al. 2005)
Special Noise-Sensitivity of Beaked Whales

- During multi-day naval exercises with sonar, Blainville’s beaked whales stopped vocalizing and feeding, moved tens of km away, returning 2-3 days after exercises stopped (McCarthy et al. 2011, Tyack et al. 2011)

- With naval sonar, Cuvier’s beaked whales stopped normal feeding and swimming, moving rapidly and silently away in longer dives, responding for 3-4 hrs. Energetic costs, increased stranding and decompression sickness risk (DeRuiter et al. 2013)

- Ship noise caused significant decrease in foraging movement of Blainville’s up to at least 5.2 km away from vessel (Pirotta et al. 2012)

- Ship noise reduced foraging efficiency by > 50%, communication range reduction to 1/5 in Cuvier’s (Aguilar Soto et al. 2006)
Possible Population-Level Effect of Sonar Use at a Navy Range

- Lower Blainville’s beaked whale abundance at naval range vs. Abaco, Bahamas, based on 15-yr. field study (*Claridge 2013*)

- Fewer births (calf:female ratio) at naval range likely reason for fewer animals (*Claridge 2013*)

- Long recoveries after deep (1,600 m), long (80 min.) dives, more vulnerable to higher energetic costs of displacement and lower feeding rates during noise exposure; mechanism for fewer calves? (*Claridge 2013*)

- Adult females show high residency at navy ranges, putting them at special risk, esp. when pregnant and lactating (*Claridge 2013*)
Bowhead Whale Calling Affected by Seismic Noise
Bowhead Whale Calling Affected by Seismic Noise

- Calls increased as soon as seismic detectable
- Calling rates leveled off at RLs of 94 dB
- >127 dB, whale calling rates began decreasing
- With noise >160 dB, whales fell silent
- Calling repressed within 50–100 km radius (8,000-30,000 sq km)
- Within 10–40 km (300–5,000 sq km), calling almost absent

Blackwell et al. 2015
Yearly difference in fecal glucocorticoid levels post 9/11, associated with less underwater low-frequency noise resulting from less ship traffic (*Rolland et al. 2012*)
Summary

• At least 130 marine species shown to be impacted by noise

• Cetaceans: avoid important habitat, reduced feeding and reproduction, call less or fall silent, experience stress, masking, fatal strandings, and, in some cases, likely population impacts due to noise

• Fish and invertebrates: impacts on development, immune responses, stress, reflexes, feeding, reproduction, predator defense, mortality, catch rates, and damage to sensory organs, which can persist at least one year post-noise exposure

• Noise can increase invasive species on ship hulls, weaken connectivity between fish populations, change predator-prey interactions and community structure, compromise food web dynamics and stability, and risk ecosystem productivity

• Studies on fish and invertebrates show impacts extend beyond *individual* species to now include *communities* of species and how they interact; the ecosystem, and ecological services